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Summary 

A dual-beam luminescence experiment is presented which is designed 
to investigate very small changes, down to 20 ps, in radiative lifetimes in the 
nanosecond range. The diffusion-controlled mechanism of collisional lumi- 
nescence quenching serves as an example to demonstrate under which con- 
ditions absolute photophysical data can be calculated on the basis of relative 
time measurements. Statistics are applied to verify the validity of the results. 

The dual-beam method is well suited to check kinetic statements. 
Furthermore, it is a valuable proof for the reliability of the time resolution. 

1. Introduction 

1 .I. Objective 
Most spectroscopic techniques evolve from the single-beam principle to 

the double-beam version. Decisive reasons are the resolution enhancement 
and the removal of a series of accompanying inconveniences such as instru- 
mental parameters and solvent contributions. 

The ideal double-beam experiment links specific sample and reference 
information, carried by their individual beams, to a composite signal before 
detection takes place. Chopping techniques approach this case only if high 
time resolution is not required. 

If time resolution becomes the point of interest,, a need for the simul- 
taneous acquisition of information on both channels arises. A possible solu- 
tion is the use of two separate detection units. Here the problem of cabbra& 
ing the system with respect to inequalities is encountered. If only a single 
detector is used, the beam information has to be structured in such a way 
that the interference pattern of the two beams transmits the information 
which is specific for the sample under study. 
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In conventional set-ups real time applications with ultrashort pulses 
are better adapted to acquisition with two detectors. Otherwise some sort 
of multiplexing by means of optical delays should be performed. 

Modulation techniques allow this information overlay where the basic 
structure consists of intensity modulation, The sample characteristic is the 
dephasing or the compression of the beam modulation. Birks and Munro 
[ I] have carefully reviewed modulation fluorimetry . Neither in these nor in 
newer experiments has a double-beam principle been applied. 

In the present work we introduce this feature and show that relative 
measurements do not necessarily cause a loss in the absolute parameters. 

1.2. The chemical model 
There are still many interesting questions to be answered in the fields 

of energy transfer processes and photoredox reactions and in studies of other 
possible relaxation channels of optically excited molecules (see for example 
ref. 2). Among these, luminescence quenching serves as a straightforward 
means of studying deactivation and is taken as a chemical model mechanism 
for this work. When a diffusion-controlled mechanism is assumed for col- 
lisional quenching (see for example ref. 3) at low dye concentrations {below 
1O-6 mol l-l), the following steps must be considered. 

lA* k, 
IA* kisc , 

lA* kt 

Q+lA* kCl 

The kinetic equation 
stants is 

1 

‘A+hv emission 

3A* intersystem crossing 

lA internal conversion 

‘A+Q quenching 

relating the fluorescence lifetime to the rate con- 

where [ Qi] denotes the concentration of the quencher in moles per litre. 

2. The dual-beam matrix method 

The modulation measurement concept [ 41 as well as the experimental 
aspects of this technique [ 51 have already been fully described. We now 
present one of the applications. 

A number n of dye solutions is prepared with different contents [Qi] 
(where i = 1 ,...,n) of quencher. This set is duplicated and, in a chess-board- 
like manner, every solution of concentration [Qi] is measured against every 
solution of concentration [Qj] . The [ Qi] solution is placed in the sample 



housing and the [QI] solution is placed in the reference housing (ref. 5, 
Fig. 1). The result of each determination is a Aifetime difference rrj. Accord- 
ing to eqn. (1) rij can be written in the following form, where we substitute 
k = J%sc + kF + kt for convenience: 

1 1 

“’ = k + 12, [QJ - k + k, [Q,] 
(2) 

The set of n solutions thus gives n2 non-linear equations which allow the rate 
constants k and k, to be determined. 

2.1. Determination of the rate constants 
Every measured lifetime difference 7u can be related to a theoretical 

time difference ttl(k, k,) which is calculated according to eqn. (2). In mak- 
ing use of the n2 measured values, the deviations from measured off and theo- 
retical tij values have to be minimized with respect to the rate constants k 
and k,. As outlined earlier [ 41 we attribute a gaussian distribution to the 
measurement errors. We therefore write 

The best fit of the rate constants to the measured times is achieved 
where A reaches a minimum, i.e. when (aA/ak)kg = 0 and (aA/ak,)k = 0. 
To obtain a criterion for the reliability of the fitted rate constants, standard 
statistical methods were applied. To make sure that, within the error of the 
data, a well-defined minimum exists, the topography of the three-dimen- 
sional hypersurface A(k, k,) was analysed (see Fig. 1). 

At the minimum A* the standard deviation u and the 95% confidence 
interval 40 of A0 can be calculated by applying parabolic interpolation 
without any loss of information [6]. 

No statistics are established for the errors in the quencher concentra- 
tion [Qi] . Numerical controls have shown that an error of 1% causes time 
shifts of below 5 ps, which lie well within the accuracy limit of ATE = 20 - 
30 ps. 

2.2. Kinetic model test and accuracy proof 
As a visualization of the fit we display the measured lifetime differences 

rtj in a chess-board scheme (Figs. 3 and 6). Instead of plotting ?U uensus [Qi] 
and [ QI 1, which would lead to a curved surface, we transform the coordi- 
nates by analogy with the Stern-Volmer plot to obtain a plane. The coordinates 
to be used are t, on the x axis and tj on the y axis, where tl and t, denote the 
absolute radiative lifetimes of samples i and j respectively and are calculated 
from eqn. (1) using the fitted values for k and k,. 

The fitted plane can be written in analytical form as 

It becomes zero for i = j and is antisymmetic with respect to ti = t,. The 
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TABLE 1 
Concentration chart for the quencher KIe 

Type I Type 11 Type C 
Code c (mall-‘) Code c (mall-r) Code c (mall-“) 

6 0 I 0.03960 1 0 
1 0.01108 2 0.04291 2 0.02167 
2 0.02306 3 0.04696 3 0.05239 
3 0.03961 4 0.05040 4 0.09930 
4 0.05844 5 0.05431 5 0.17977 
5 0.08396 6 0.05844 6 0.35000 

aThe designation of types I, II and C ia explained in the text (see Section 4). 

goodness of the fit is checked by comparison of the experimental values 7ji 
with the fitted values t,. 

The accuracy of the modulation technique can be checked by applying 
two model independent criteria. 

(1) The more closely the values for Tii approach zero, the more accurate 
is the method, because this may be considered as a calibration measurement 
at an exactly known theoretical value tii = 0 which is independent of [Q] , 
k and kQ and hence of the model itself. 

(2) The more completely the antisymmetry for Tij = - Tji is satisfied, 
the higher is the probability that the measurement system is free from artefacts. 

3. Experimental conditions 

The dye Rhodamine B extra SP (BASF) was used without further puri- 
fication in non-degassed solutions at concentrations below 10B6 moll-l. The 
solvent used was a mixture of 90% absolute ethanol (p.a. Merck) and 10% 
doubly distilled water. The quencher employed was neutral KI (p.a. Merck) 
at the concentrations given in Table 1. 

The excitation wavelength was the 530.9 nm line of a krypton ion laser 
at power levels of some milliwatts. The emission bandwidth was selected 
using a Balzers interference filter centred at X = 588 nm and with a full 
width at half-maximum of 42 nm. The modulation frequency was approxi- 
mately 35 MHz. 

Data reduction of the measurements was performed on a PDP lljO5 
computer inherent to the Tektronix WP2221 acquisition system running 
under TEK SPS BASIC. The contour matrix was generated on an IBM 370 
computer using FORTRAN IV with double precision and was plotted [ 71 
using Tektronix graphic terminals. 



3s 

Fig. l_ An iso-error-square (DES) map for measurements of type I : the error topography 
for a wide span of rate constant coordinates. The distance between the equicontours is 
250~. The deepest line marks the 96% confidence level. 

L.1 
3.0 3.1 3.2 3.3 3.L 3.5 3.6 3.7 

L.1091 
3.8 3.9 L.0 

Fig. 2. An IES map for measurements of type I: the error topography in the proximity 
of the minimum. The distance between the equicontours is U. The first trace locates (I 
above the minimum (A0 + a). 

4. Results 

The concentration range of the added quencher fixes the type of infor- 
mation to which there is ready access. 

(1) The large range for type I information is appropriate for calculating 
the photophysical constants k and k,. 

(2) The small range for type II information serves as an accurate resolu- 
tion test and/or proof. 

(3) The extra-large range for type C information is introduced for com- 
parative purposes to underline the tendency. It was calculated only. 

The accuracy of the measured lifetime differences does not depend on 
the concentration range. 

4.1. Type I: the broad quenching range 
The topography of the contour line diagrams strongly resembles a steep 

and narrow valley on the flat bottom of which resides a shallow pool reflect- 
ing our 95% confidence area (Fig. 1). To highlight the conditions in the 
proximity of the minimum, the contour data were recalculated for a smaller 
section and the results are shown in Fig. 2. 
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Fig. 3. A chess-board stick plot for type I measurements (k = 4.32 X lOa s-l, k, * 3.44 X 
lo9 1 mold1 s-l) (see text), 

This procedure can be repeated many times and the appearance always 
remains the same. This reveals clearly that even if the valley is flat there is a 
definite minimum of reasonable structure. We consider this to be evidence 
for the kinetic model and at the same time as proof that the calculation is 
sufficiently precise to exclude numerical artefacts. The fitted rate constants 
hence evaluate to 

k = (4.32 * 0.3) X lo8 s-l 
and 

k, = (3.44 f 0.5) X log 1 mol-l s-l 

The uncertainty interval is given by the extrema of the 95% confidence sur- 
face with respect to the rate constant coordinates. Insertion of k and k, into 
eqn. (2) allows the time domain plot of Fig. 3 to be set up. 

In this figure every vertical stick denotes a measurement of Tij. The hats 
on top of the sticks represent the error intervals ATij resulting from the on- 
line error estimation described extensively in ref. 4. The measurements 
shown in Fig. 3 which are flagged with a triangle at the bottom of the stick 
were eliminated before the determination of the rate constants. They 
exceeded the dynamic range of our instrumental set-up and could only be 
acquired by means of a coarse disadjustment of the beam intensities. This 
obviously led to less accurate results. An impression of the accuracy achieved 
is given in Fig. 4. 

There is a good correspondence between the error estimation and the 
effective deviations. It can be seen from Table 2 and Fig. 4 that the estimates 
were made cautiously as the real deviations from theory are about a factor 
of 2 smaller. 
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2.114 2.127 1.666 1.769 I .676 1 .167 
100 1 I I I NS 1 
se 

l.l II 

Fig. 4. The residues of Fig. 3 (k = 4.32 x 10’ IS-‘, k, = 3.44 X 10’ 1 mof’ s-l). The 
amounts tu - TU (sticks) are shown in relation to the error intervals Aru (hats). 

4.2. Type II: the small quenching range 
A map analogous to that shown in Fig. 1 is plotted in Fig. 5. It is ob- 

viously no longer possible to minimize the rate constant8 in a reasonable 
way. The topography is much less steep over the whole region; therefore the 
experimental errors may change the structure of our valley significantly. 
Nevertheless our pool contains the (k, k,) coordinates deduced for type I 
measurements. Using these constants we can build the time domain graph 
shown in Fig. 6, which reflects the high time resolution of the picosecond 
apparatus. 

To emphasize the accuracy, auxiliary lines are added to Fig. 7. Their 
crossing point8 represent the theoretical times t,. The auxiliary plane thus 
formed corresponds to the plane shown in Fig. 4. 

4.3. Model calculations 
Three questions induced us to carry out such calculations. 
(I) To what extent do the experimental errors distort the structure of 

the minimum? 
(2) Which time resolution is required for this type of measurement to 

improve precision of the rate constant8 significantly? 
(3) How does the structure of the IES map alter with increasing concen- 

tration span of the quencher? 
The procedure for these investigation8 is essentially equivalent to that 

used to calculate the contour matrix. The only difference is that the errors 
trl - 7i5 are randomly generated and are normalized to a preset sum of error 
squares A’. A matrix of theoretical time differences tfj is set up according to 
eqn. (2) based on the fitted rate constants k and k, of the appropriate case. 
Experimental data are then simulated by overlaying the random error distri- 
bution to the theoretical times. 
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Fig. 6. An IES map for measurements of type II: the error topography for a wide coor- 
dinate span. The distance between the equicontours is 2500. The deepest line marks the 
95% confidence level. 

1.760 288 1.725 1 .IIS t .c70 
I NS 1 

168 

60 

Fig. 6. A chees-board stick plot for type II measurements (A = 4.32 X lO*s’, k, = 3.44 X 
lo9 1 mol-l Cl) (see text). 

Comparison of Fig. 2 with Fig. 7 gives the answer to the first question. 
No obvious distortion can be detected, except that the statistics seem to be 
slightly more advantageous at small (k, k,) values in Fig. 7. 

The moderate shift of the minimum coordinates is the consequence of 
the different error distribution and lies well within the tolerable limit. There- 
fore Fig. 7 can be considered as evidence that our measurement errors are 
random and that the model applied is consistent with the experimental data. 

The second question deal8 with the dependence of the accuracy of the 
rate constants on the measurement precision. Computational studies reveal 
a nearly linear course for type I information, i.e. a reduction in tij - 7ii by a 
factor of 2 reduces the uncertainty intervals for k and k, by a factor of 2. 
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Fig. 7. An IES map of simulated type I measurements: a computer-simulated map 
analogous to Fig. 2. 
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Fig. 8. An IES map for measurements of type C: the error topography for the model case 
of an extreme concentration span. The distance between the equicontours is 5000. 

For type II information the steepness and the width of the valley decrease 
significantly to a long groove and hence type II information is not suitable 
for locating a clean extremum. 

The last parameter discussed is the span of the quencher concentra- 
tions. Comparison of the contour matrices for type I and type II information 
shows that an increase in the concentration span favours the determination 
of the rate constants. This tendency is confirmed in Fig. 8. The experimental 
conditions are adapted to those of type I information, except for the 
quencher concentrations which are listed in Table 1. They approximately 
represent the maximum span which can be realized experimentally. 

Further increase in the span leads to more circular shapes in the valley 
structure and therefore to more accurate rate constants. 

5. Conclusions 

The dual-beam feature of this experiment turns out to be an important 
step towards measurements of small changes in relaxation kinetics in the 
picosecond and nanosecond domain. The time resolution of 20 ps with 
respect to absolute accuracy was confirmed by the very satisfactory ztntisym- 
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metry 7ij = - 7ji and the fact that 711 = 0 is closely approached for all mea- 
surements with i = j. The absolute data for the rate constants are quite ac- 
curate taking into consideration the fact that they originate from relative 
measurements. It is evident that the method is not restricted to collisional 
quenching but can be easily adapted to investigate, for example, the influ- 
ence of temperature, viscosity, solvents, dye concentration or energy trans- 
fer. 
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